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1. Introduction

One of the most remarkable aspects of recent developments in the perturbative approach to

gauge theories is the demonstration that known results for scattering amplitudes, at least

at tree-level [1]–[2] and low order in the loop expansion [3]–[5], can be constructed by using

scalar propagators to contract together certain, rather special, scattering amplitudes, as

though these were the vertices of some effective field theory. (The loop level results build

on earlier work that exploited unitarity to construct complete expressions for amplitudes at

any number of loops from simpler on-shell amplitudes both in supersymmetric theories and

non-supersymmetric ones, see [6] for a general discussion and references). This appears to

offer an alternative to the usual Feynman diagram expansion. A special rôle is played by

the maximally helicity violating amplitudes (MHV) which describe the tree-level scattering

of n gluons, with n − 2 of positive helicity and 2 of negative helicity (when all gluons are

assigned outgoing momenta.) Any tree-level amplitude, An, can be decomposed into a sum

over colour-ordered partial amplitudes, An, multiplied by a momentum conserving delta

function, and a trace over a product of colour matrices,

An =
∑

σ

tr (TRσ(1) ..TRσ(n)) i(2π)4 δ4(p1 + · · · + pn)Aσ
n ,

where the sum extends over distinct cyclic orderings of the gluons, σ. For an MHV ampli-

tude the partial amplitude has the simple form [7]–[8]

A = gn−2 〈λr, λs〉
∏n

j=1〈λj , λj+1〉

where the gluons with negative helicity are labelled by r and s and g is the coupling. The

gluons are on-shell, and if the j-th has four-momentum components (pµ) with respect to the

Minkowski space co-ordinates (t, x1, x2, x3), then λj is the two-component spinor such that

λj λ̃j = pt +
∑

σipi ≡ Q(p), where σi are the Pauli matrices, λ̃ = λ† for positive energies

and λ̃ = −λ† for negative ones, and 〈λj , λk〉 = λT
j iσ2 λk, where T denotes tranposition.
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In the MHV rules the partial amplitudes replace the vertices of the usual Feynman

diagrams, (see [9] and references therein for recent developments in this approach), and

these are glued together using scalar propagators that contract fields of opposite helicity.

Internal lines are off-shell, so that a prescription is needed to continue the MHV amplitude.

The investigation of these rules has been largely empirical in that a dual string theory

picture first inspired the conjecture of rules for combining amplitudes, first at tree-level

and then at loop level, and these conjectures have been tested against known results.

In [10] Britto, Cachazo, Feng and Witten gave a proof of the tree-level MHV rules based

on their factorisation properties and an alternative proof using on-shell recursion relations

was given by Risager in [11]. Recently the rules have been derived from a twistor-space

action, [12]. In this paper we will derive the MHV rules directly from Yang-Mills theory

by constructing a canonical transformation that maps between the two. This makes the

details of the MHV rules such as the off-shell continuation transparent, as well as taking

a step towards the systematic development of the quantum theory via the loop expansion.

Gorsky and Rosley argue, [13], in the absence of fermions, that this transformation should

be obtained from the solution to the self-dual Yang-Mills equations. We will not follow

this route, but rather obtain an explicit expression for the canonical transformation, (2.5)

below, and its generalisation in the presence of fermions, (3.4), by demanding that certain

vertices are eliminated by the transformation and we will then use analyticity to show how

the transformed action incorporates the MHV amplitudes as vertices.

2. The transformation

It is well known that the light-front quantisation of Yang-Mills theory leads to a simple

formulation in terms of physical degrees of freedom, so we begin by writing the covariant

action

S =
1

2g2

∫

dt dx1 dx2 dx3 tr
(

F λρ Fλρ

)

,

where

Fλρ = [Dλ, Dρ], D = ∂ + A, A = ARTR,

[TR, T S ] = fRSP TP , tr
(

TR T S
)

= −δRS

2
,

in terms of variables appropriate to quantisation surfaces of constant µ · x, where µ is a

null-vector. We will use space-time co-ordinates related to the co-ordinates (t, x1, x2, x3)

for which (µ) = (1, 0, 0, 1) by

x0 = t − x3, x0̄ = t + x3, z = x1 + ix2, z̄ = x1 − ix2 , (2.1)

so that the invariant interval is ds2 = dx0 dxō − dz dz̄. It is natural to impose the gauge

µ · A = 0 ⇒ A0̄ = 0, which leads to the field independent Faddeev-Popov determinant

Det ∂0̄. This eliminates one unphysical degree of freedom, we can make the other explicit

by defining

AL = A0 − ∂−1
0̄

(∂z̄Az + ∂zAz̄) . (2.2)
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This corresponds to expanding the gauge fixed field on the quantisation surface as

Aρ = µρ AL + Aρ
+ + Aρ

− , (2.3)

where A± contain the physical positive and negative helicity components with polarisation

vectors E± associated with the Fourier expansions

A± =

∫

d4p δ(p · p)E±(p)
(

a(p, x0)rα e−ip·x + b(p, x0)rα eip·x
)

,

so that p is on-shell with positive energy. Because of the arbitrary x0 dependence included

in the coefficients, a and b, this places no restriction on A other than the gauge-condition,

and that it have a Fourier integral. If these coefficients were independent of x0 then A

would be on-shell, but we do not assume this. The {Er} are most conveniently expressed

as quaternions

E+(p) =
µsλ̃

〈µs , λ 〉 , E−(p) =
λµ̃s

[λ, µs]
,

where [λ, µs] = λ̃iσ2µ̃T
s , and µs is a 2-spinor related to the null-vector µ by Q(µ) = µs µ̃s,

for example µs = (
√

2, 0)T . The polarisations satisfy p · E±(p) = 0 which leads to (2.2).

Now in the co-ordinates (2.1)

µz = µz̄ = 0, E+(p)z̄ = E−(p)z = 0

so that in (2.3) only the positive helicity field A+ contributes to Az whilst only the negative

helicity field A− contributes to Az̄.

In these variables the action becomes, S = 1
g2

∫

dx0 dx0̄ dz dz̄ (L2 + L3 + L4) with

L2 = tr
(

Az ∂2 Az̄ − (∂0̄AL)2
)

,

L3 = tr
(

(∂0̄Az) [Az̄ , AL] + (∂0̄Az̄) [Az , AL]

+4(∂0̄Az) [Az̄ , ∂
−1
0̄

∂zAz̄] + 4(∂0̄Az̄) [Az , ∂
−1
0̄

∂z̄Az]
)

,

L4 = tr (Az Az̄ [Az̄ , Az]) .

This is quadratic in AL, so we can integrate out this degree of freedom. Equivalently,

if we were taking a Hamiltonian point of view, rather than a Lagrangian one, then we

would observe that the equation of motion of AL does not involve the ‘time’ derivative

∂0 appropriate to the constant-x0 quantisation surfaces, Σ, and so this variable should be

eliminated via its equation of motion. The resulting action takes the particularly compact

form

SL =
4

g2

∫

dx0 d3x tr
(

Az ∂0∂0̄ Az̄ − [Dz̄, ∂0̄Az] ∂
−2
0̄

[Dz, ∂0̄Az̄]
)

,

where d3x = dx0̄ dz dz̄ and bold-face type refers to position on constant-x0 surfaces.

Writing out the gauge-covariant derivatives gives the light-front Lagrangian in the form

L2 + L++− + L−−+ + L−−++ with

L2[A] =
4

g2

∫

Σ
d3x tr (Az (∂0∂0̄ − ∂z∂z̄)Az̄) ,
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L++−[A] =
4

g2

∫

Σ
d3x tr

(

−(∂z̄∂
−1
0̄

Az) [Az, ∂0̄Az̄]
)

,

L−−+[A] =
4

g2

∫

Σ
d3x tr

(

−[Az̄, ∂0̄Az] (∂z∂
−1
0̄

Az̄)
)

,

L−−++[A] =
4

g2

∫

Σ
d3x tr

(

−[Az̄, ∂0̄Az] ∂
−2
0̄

[Az, ∂0̄Az̄]
)

.

In the Feynman diagram expansion L2 gives a scalar type propagator ∝ 1/p2 contracting

the positive and negative helicity fields Az and Az̄ contained in the vertices L++−, L−−+,

and L−−++ which are labelled by their helicity content. The resulting diagrams differ

significantly from the MHV rules because they involve the vertex L++− which has only

one negative helicity and the higher order vertices corresponding to the maximal helicity

violating amplitudes themselves are absent.

To change the action into one that generates the MHV rules we look for a transforma-

tion that effectively eliminates the vertex L++− at the same time generating the missing

MHV vertices. We will require that the transformation be canonical because in light-

front quantisation the momentum canonically conjugate to Az, Πz, is (up to a constant)

∂0̄Az̄ so that the functional integral measure obtained as the product over space-time of

dAz(x) dAz̄(x) differs from the product of dAz(x) dΠz(x) by the field independent factor

Det(∂0̄) and so is invariant under canonical transformations. So we look for new fields

B±(x) such that B+ is a functional of Az on the quantisation surface, (but not Az̄),

B+ = B+[Az], and

∂0̄Az̄(x
0, y) =

∫

Σ
d3x

δB+(x0, x)

δAz(x0, y)
∂0̄B−(x0, x) , (2.4)

(so that the momentum canonically conjugate to Az should transform as −iδ/δAz .) We

choose the transformation to ensure that

L2[A] + L++−[A] = L2[B] ,

so when we express the free part of the action and the unwanted vertex in terms of the

new fields we obtain just a free action. Explicitly this requires
∫

Σ
d3y tr

(

(

{∂0 − ω}Az − [Az, ∂z̄∂
−1
0̄

Az]
)

|x0,y

δB+(x0, x)

δAz(x0, y)
∂0̄B−(x0, x)

)

= tr ({∂0 − ω}B+∂0̄B−) |x0,x .

where we have introduced the operator ω(x) = ∂z∂z̄/∂0̄. The terms in ∂0Az and ∂0B+ are

automatically equal provided that B+ depends on x0 only implicitly through Az, so that

B+ just has to satisfy
∫

Σ
d3y [Dz , ∂z̄∂

−1
0̄

Az]|x0,y

δB+(x0, x)

δAz(x0, y)
= ω B+(x0, x) .

This is readily solved as a power series in Az so that

BR
+(x0, x) =

∞
∑

n=1

∫

Σ
d3y1..d

3ynΓRP1..Pn
n (x,y1..yn)AP1

z (x0, y1)..A
Pn
z (x0, yn)
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where the functions Γn are independent of x0 and are constructed iteratively from

ΓRP1
1 (x,y1) = δRP1 δ3(x − y1) , ΓRP1..Pn

n (x,y1..yn) =

= S
1

ω(x) + ω(y1) + .. + ω(yn)
fP1P2P

(

∂z̄

∂0̄
δ(y1 − y2)

)

ΓRPP3..Pn

n−1 (x,y2..yn) . (2.5)

S is the instruction to symmetrise over the pairs of indices attached to the Az fields,

P1, y1..Pn, yn. The inverse of the transformation gives Az on Σ as a power series in B+

of the form

AR
z (x0, x) =

∞
∑

n=0

∫

Σ
d3y1..d

3ynΥRP1..Pn
n (x,y1..yn)BP1

+ (x0, y1)..B
Pn

+ (x0, yn) , (2.6)

with the Υ computable from Γ and from this we obtain Az̄ as a power series using (2.4)

AR
z̄ (x0, x) =

1

∂0̄

∞
∑

n=1

∫

Σ
d3y1..d

3ynn ΞRP1..Pn
n (x,y1..yn)BP1

+ (x0, y1)..B
Pn−1
+ (x0, yn−1) ∂0̄B

Pn

− (x0, yn)

(2.7)

the important point is that this last expression is linear in ∂0̄B− so that when the remaining

part of the Lagrangian, L−−+[A] + L−−++[A], is expressed in terms of B± the result is an

infinite series in B+ but is only quadratic in B−. We write this as V −−+[B]+V −−++[B]+

V −−+++[B] + ... The vertices are labelled by their helicity content in terms of the positive

helicity B+ field and negative helicity B− field, and are local in the light-front ‘time’, x0,

V −−+..+ =

∫

Σ
d3y1..d

3yn Ṽ P1..Pn(y1, ..,yn)BP1
− (x0, y1) BP2

− (x0, y2)×

BP3
+ (x0, y3) ... BPn

+ (x0, yn) . (2.8)

In principle we could obtain explicit expressions for the vertices V −−+..+ from the

transformation (2.5), but we will take a different path so that we will not need the detailed

form of the transformation; only its existence and general properties will be used. We will

construct the off-shell Lagrangian from a knowledge of on-shell tree-level scattering. We do

not include loops because the Lagrangian itself is a classical object. Consider calculating

an MHV amplitude with n on-shell gluons from the Feynman diagram expansion of the

transformed action

SL =
4

g2

∫

dx0
(

L2[B] + V −−+[B] + V −−++[B] + .. + V −−+..+[B] + ..
)

.

The LSZ procedure gives the amplitude in terms of the momentum space Green function for

n− 2 suitably normalised Az fields and two Az̄ fields by cancelling each external leg using

a factor p2 and then taking each momentum on-shell, p2 → 0. The equivalence theorem for

S-matrix elements allows us to use Green functions for the B± fields instead of the Az and

Az̄, provided we include a multiplicative wave-function renormalisation. But in calculating

the MHV amplitude we are working at tree-level and so obtain identical results using the

– 5 –
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B fields or the A fields because to leading order in the expansions (2.6) and (2.7) they are

the same, and the higher order terms are annihilated by the on-shell p2 factors that cancel

externel legs since we don’t include loops. The MHV amplitude is therefore the sum of

on-shell tree-level Feynman diagrams with n − 2 external B+ legs and two external B−

legs, with the propagators for the external legs cancelled. Since the propagator contracts

B+ fields with B− fields in pairs there is only one vertex that can contribute to any

given MHV amplitude, namely the vertex with the same helicity assignment, (although

amplitudes that are not MHV will be made up of contractions of more than one vertex.)

So the MHV amplitude is simply the vertex evaluated on-shell. This provides useful, but

limited information about the Lagrangian. Of course we really need the vertices evaluated

for arbitrary field configurations, not just those that are on-shell, but the general properties

of the canonical transformation will enable us to extract these and at the same time shed

light on the origin of the off-shell continuation proposed in [1]. Explicitly we replace the

B+(x0,y) fields in (2.8) by g TR E+
z eip·y with p ·y = p0x

0 +p0̄y
0̄ +pzy

z +pz̄y
z̄ ≡ p0x

0 +p ·y
and B−(x0,y) fields by g TR E−

z̄ eip·y (both with p2 = 0) to obtain the MHV amplitude as

4gn−2

∫

dx0 d3y1..d
3yn Ṽ R1..Rn(y1, ..,yn) ×

×ei
Pn

1 (pj
0x0+p

j ·yj)E+
z (p1)..E+

z (pn)E−
z̄ (pr)E−

z̄ (ps)

=
∑

σ

i(2π)4 δ4(p1 + .. + pn) gn−2 tr (TRσ(1) ..TRσ(n))
〈λr, λs〉4

∏n
j=1〈λσ(j), λσ(j+1)〉

Ṽ is independent of x0 so this integration yields a δ-function giving an expression for the

Fourier transform of Ṽ :

δ
(

p1
0 + .. + pn

0

)

∫

d3y1..d
3yn Ṽ R1..Rn(y1, ..,yn) ei

Pn
1 p

j ·yj =

δ(p1
0+· · ·+pn

0 )
∑

σ

δ3(p1+· · ·+pn)
iπ3 tr(TRσ(1) ..TRσ(n))

E+
z (p1)..E+

z (pn)E−
z̄ (pr)E−

z̄ (ps)

〈λr, λs〉4
∏n

j=1〈λσ(j), λσ(j+1)〉
.

The Fourier transform of Ṽ specifies the vertex completely so that once it is known we can

compute (2.8) for arbitrary, off-shell field configurations. It would appear to be a simple

matter to cancel the first δ-function to obtain what we need:
∫

d3y1..d
3yn Ṽ R1..Rn(y1, ..,yn) ei

Pn
1 p

j ·yj =

∑

σ

δ3(p1 + .. + pn)
iπ3 tr (TRσ(1) ..TRσ(n))

E+
z (p1)..E+

z (pn)E−
z̄ (pr)E−

z̄ (ps)

〈λr, λs〉4
∏n

j=1〈λσ(j), λσ(j+1)〉
, (2.9)

however there is the possibility of missing a term that vanishes on the support of the

cancelled δ-function. We now appeal to analyticity to show that such a term is absent.

Firstly observe that the vertices, (2.8), are constructed from

L−−+[A] + L−−++[A] =
4

g2

∫

Σ
d3x tr

(

−[Az̄, ∂0̄Az] ∂
−2
0̄

[Dz, ∂0̄Az̄]
)

, (2.10)
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which is written without the use of ∂z̄. As we will see, this implies that the vertices, (2.8),

inherit this property. The canonical transformation (2.5) does involve ∂z̄, both explicitly,

and in the operator ω(x) = ∂z∂z̄/∂0̄. This dependence cancels for n = 2, but not for

larger n, so we need to study the effect on the transformation of varying ∂z̄Az. Now we

constructed the transformation so that

L2[B] = L2[A] + L++−[A] =
4

g2

∫

Σ
d3x tr

(

Az ∂0∂0̄ Az̄ + ∂z̄Az ∂−1
0̄

[Dz, ∂0̄Az̄]
)

.

This is almost invariant under the homogeneous part of a gauge transformation with a

gauge-parameter θ that depends only on z̄,

δθ Az = [Az, θ(z̄)], δθ Az̄ = [Az̄, θ(z̄)] (2.11)

but fails to be so because of the second term in the transformation of ∂z̄Az

δθ ∂z̄Az = [∂z̄Az, θ(z̄)] + [Az, ∂z̄θ(z̄)] .

Consequently the change in L2[A] + L++−[A] is the same as if we only vary ∂z̄Az by this

second term, δ ∂z̄Az = [Az, ∂z̄θ(z̄)] and leave everything else alone. So the effect on the

canonical transformation of varying ∂z̄Az is equivalent to a transformation of the form of

(2.11), but (2.10) is manifestly invariant under such a change, so the vertices, (2.8), cannot

contain ∂z̄. This explains the absence from (2.9) of any term that vanishes on the support

of δ(p1
0 + .. + pn

0 ) for on-shell p0 = pzpz̄/p0̄, because for n > 3 any such term depends on

pz̄. (n = 3 is a special case because using 3-momentum conservation

p1
0 + p2

0 + p3
0 =

p1
zp

1
z̄

p1
0̄

+
p2

zp
2
z̄

p2
0̄

− (p1
z + p2

z)(p
1
z̄ + p2

z̄)

p1
0̄
+ p2

0̄

=
|p1

zp
2
0̄
− p2

zp
1
0̄
|2

(p1
0̄
+ p2

0̄
)p1

0̄
p2
0̄

so that p1
zp

2
0̄
− p2

zp
1
0̄

vanishes on the support despite being independent of p1
z̄ and p2

z̄. How-

ever (2.9) still holds for this case as can be checked by explicit computation of the off-shell

three-point vertex.)

Consistency requires that, apart from the δ-function, the right-hand-side of (2.9) should

also be independent of the pi
z̄. Up to a choice of phase the λj can be written entirely in terms

of p0̄ and pz, and the arbitrariness this choice of phase is cancelled by the contributions

of the polarisation vectors E± to the denominator, enabling us to take, for example, λ =

(−pz

√
2/
√

p
0̄
,
√

2p0̄)
T and E+

z = −1/2, so (2.9) is indeed independent of the pi
z̄.

This identification of the vertices explains the off-shell continuation used in [1]. The

vertices (2.8) require Ṽ to be integrated against B fields that are not constrained to be

on-shell, i.e. the vertex will include Fourier components
∫

d4xB(x) eip·x ≡ B̃(p0,p) for

which p2 6= 0. But (2.9) shows that the vertex is essentially the MHV amplitude built out

of on-shell momenta whose components within the quantisation surface coincide with the

p of B(p0,p), but with the 0-component fixed by the mass-shell condition. The on-shell

momentum constructed from an off-shell momentum with the same p part can be expressed

as p − µ p · p/(2 p · µ). If Q(p) is the quaternion constructed from p, then the spinor λ to

be used in the MHV amplitude satisfies

Q(p) − µsµ̃s p2/(2 p · µ) = λ λ̃ ⇒ λ ∝ Q(p)η ,

– 7 –



J
H
E
P
0
3
(
2
0
0
6
)
0
3
7

which is the prescription of [1] when the ‘reference spinor’, η, is chosen so that µ̃s η = 0,

i.e. η ∝ (0, 1)T .

Putting all this together gives the transformed action

SL =
4

g2

(

∫

dx0 d3x tr
(

B+ (∂0∂0̄ − ∂z∂z̄)B−

)

+
∞

∑

n=3

∑

σ

∫

dx0 d3p1..d3pn tr (B+(x0,p1)..B−(x0,pr)..B−(x0,ps)..B+(x0,pn))

E+
z (p1)..E+

z (pn)E−
z̄ (pr)E−

z̄ (ps)

× iπ3 δ3(p1 + .. + pn)
〈λr, λs〉4

∏n
j=1〈λσ(j), λσ(j+1)〉

)

,

where B±(x0,p) =
∫

Σ d3xB±(x0,y)e−ip·y. This generates Feynman rules in which the

MHV amplitudes appear as vertices contracted using scalar propagators.

3. Quarks

We can extend the transformation to include massless quarks. When we associate helicities

with outgoing particles they become identified with chirality. If we use the representation

of the γ-matrices:

γt =

(

0 1

1 0

)

γi =

(

0 −σi

σi 0

)

γ5 =

(

1 0

0 −1

)

, (3.1)

and denote the spinor components as

ψ = (α+, β+, β−α−)T /
√

2, ψ̄ = (β̄+, ᾱ+, ᾱ−, β̄−)/
√

2 ,

then the ± subscripts refer to helicities and the fermionic contribution to the Lagrangian

density becomes in light-front variables

Lq = iψ̄ γρDρ ψ =

i(ᾱ+D0α−+ β̄+∂0̄β−+ β̄+Dzα−+ ᾱ+Dz̄β−ᾱ−D0α+ + β̄−∂0̄β+− β̄−Dzα+− ᾱ−Dz̄β+) (3.2)

The β variables have no ∂0 derivatives acting on them. They are not dynamical on the

constant-x0 surfaces, just like AL, so they should be eliminated via their equations of

motion too. Also (2.2) implies that there are now ᾱ±α∓ contributions to the equation

of motion of AL modifying the bosonic action. The full Lagrangian becomes Lf + L2 +

L++− + L−−+ + L−−++ with L2 + L++− + L−−+ as before, L−−++ modified to

L−−++[A, ᾱ, α] = L−−++[A]+

+
1

2g2

∫

d3x tr
(

2j ∂−2
0̄

([Az̄, ∂0̄Az] + [Az, ∂0̄Az̄]) − j ∂−2
0̄

j
)

,

where

jP =
ig2

4

(

ᾱ+ TP α− + ᾱ− TP α+

)

,
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and

Lf =
i

4

∫

Σ
d3x

(

(ᾱ+∂0α− + ᾱ−∂0α+ + ᾱ+

(

∂−1
0̄

(∂z̄Az + ∂zAz̄)
)

α−

+ᾱ−

(

∂−1
0̄

(∂z̄Az + ∂zAz̄)
)

α+ − ᾱ+Dz̄∂
−1
0̄

Dzα− − ᾱ−Dz̄∂
−1
0̄

Dzα+

)

.

This can be decomposed by helicity into Lf = L+−
f + L++−

f + L−−+
f + L−−++

f .

We now look for a transformation to new variables B±, ξ̄± and ξ±that eliminates

the + + − vertices whilst preserving the integration measure that appears in the path-

integral, DAz DAz̄ Dᾱ+ Dᾱ−Dα+ Dα−. To fulfil the second requirement we again take the

transformation to be canonical, and since iᾱ∓/4 is conjugate to α± we take this to have

the form

B+ = B+[Az, ξ+, ξ−] , ξ±(x0,x) =

∫

Σ
d3y R(x,y)α±(x0,y) ,

∂0̄Az̄(x
0, y) =

∫

Σ
d3x

δB+(x0, x)

δAz(x0, y)
∂0̄B−(x0, x) +

i2g2

∫

Σ
d3x d3x′

(

ξ̄+(x0,x)
δR(x,x′)

δAz(x0, y)
α−(x0,x′) + ξ̄−(x0,x)

δR(x,x′)

δAz(x0, y)
α+(x0,x′)

)

where

ᾱ±(x0,x) =

∫

Σ
d3y ξ̄±(x0,y)R(y,x) , (3.3)

where R depends on x0 only implicitly through being a functional of Az on the constant-x0

quantisation surface. To remove the unwanted vertices we need

L2[A] + L++−[A] = L2[B] , L+−
f [ᾱ, α] + L++−

f [A, ᾱ, α] = L+−
f [ξ̄, ξ] .

These are satisfied by our previous solution for B provided that R satisfy

(

ω(x) + ω(x′)
)

R(x, x′) −
∫

Σ
d3y

(

ω(y)AP
z (y)

) δ

δAP
z (y)

R(x, x′) =

= R(x, x′) ∂−1
0̄

∂z̄Az(x
′) −

(

∂′
z̄∂

′−1
0̄

R(x, x′)
)

Az(x
′)

which can be solved in powers of Az

R(x, x′) =

∞
∑

n=0

∫

Σ
d3y1..d

3ynΓ̃n(x, x′, y1..yn)Az(x
0, y1)..Az(x

0, yn)

with the functions Γn constructed iteratively from

Γ̃0(x, x′) = δ3(x− x′)
�

,

and

Γ̃n(x, x′, y1..yn) =

= S
1

ω(x) + ω(x′) + ω(y1) + .. + ω(yn)

(

Γ̃n−1(x, x′,y1..yn−1)∂
−1
0̄

∂z̄δ(yn − x′)

−δ(yn − x′)∂′
z̄∂

′−1
0̄

Γ̃n−1(x, x′,y1..yn−1)
)

. (3.4)

Having obtained the transformation the rest of the argument to identify the new vertices

as MHV amplitudes goes through as before.
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4. Conclusions

We have constructed a canonical transformation that takes the usual gauge theory action

into one which generates the MHV rules. The use of light-front quantisation surfaces is a

crucial first step. It provides a natural interpretation of the off-shell continuation used in [1]

because the spinor λ assocated to an off-shell momentum is the same as that associated with

the on-shell momentum which has the same components within the quantisation surface.

Analyticity was also necessary to extract the off-shell vertices from the on-shell information

contained in the MHV amplitudes.

Using these vertices and the scalar propagator we might begin to systematically con-

struct the loop expansion in the usual way. To complete the task would require a choice of

regulator that preserved the structures we have exploited which appear to be intrinsically

four-dimensional. Also a complete treatment would require careful consideration of the

singularities of the operator ∂−1
0̄

that is ubiquitous in our construction. The singularities

are connected to the zero-modes generated by residual gauge transformations and these

have been thoroughly studied in the literature on light-front quantisation.

We took a Lagrangian point of view, since this is the most familiar, but it is clear that

the use of light-front quantisation surfaces is central arguing that a Hamiltonian approach

might be more natural.
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